## $Ni[(EP^{i}Pr_{2})_{2}N]_{2}$ Complexes: Stereoisomers (E = Se) and Square-Planar Coordination (E = Te)

Nikolaos Levesanos,<sup>†</sup> Stuart D. Robertson,<sup>‡</sup> Dimitrios Maganas,<sup>†</sup> Catherine P. Raptopoulou,<sup>§</sup> Aris Terzis,<sup>§</sup> Panavotis Kyritsis,<sup>\*,†</sup> and Tristram Chivers<sup>\*,‡</sup>

Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-157 71 Athens, Greece, Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and Institute of Materials Science, NCSR "Demokritos", GR-153 10 Aghia Paraskevi Attikis, Greece

Received February 12, 2008

The reaction of  $({}^{i}Pr_{2}PE)_{2}NM \cdot TMEDA$  (M = Li, E = Se; M = Na, E = Te) with NiBr<sub>2</sub> · DME in THF affords Ni[(SeP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub> as either square-planar (green) or tetrahedral (red) stereoisomers, depending on the recrystallization solvent; the Te analogue is obtained as the square-planar complex Ni[(TeP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub>.

It is well established that Ni<sup>II</sup> complexes exhibit a range of coordination spheres of various geometries, including octahedral, tetrahedral (T<sub>d</sub>), and square planar (SP).<sup>1</sup> This structural flexibility is also manifested in the active sites of Ni-containing metalloenzymes, which adopt structures that will provide the electronic properties needed for a specific biological reactivity. However, the geometries of the metalloenzyme active sites are usually distorted from the ideal geometries.<sup>2-5</sup>

A common feature in structural bioinorganic chemistry is the presence of sulfur-containing ligands in the active site of metalloenzymes for various metal ions, including Ni<sup>II</sup>, most usually in the form of cysteine thiolate or sulfide,  $S^{2-}$ . Selenocysteine (SeCys) selenolate is also known to coordinate either Mo or W in the active site of formate dehydrogenase<sup>6</sup> or Ni in the so-called Ni-Fe-Se hydrogenases.<sup>7</sup> Several coordination compounds that reproduce the structural

- § NCSR "Demokritos"
- (1) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley Interscience: New York, 1999; pp 838-846.
- (2) Maroney, M. J. Curr. Opin. Chem. Biol. 1999, 3, 188-199.
- (3) Lindahl, P. A. J. Biol. Inorg. Chem. 2004, 9, 516-524.
- (4) Jeoung, J. H.; Dobbek, H. Science 2007, 318, 1461–1464.
  (5) Ragsdale, S. W. J. Inorg. Biochem. 2007, 101, 1657–1666.
- (6) Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.; Stadtman, T. C.; Sun, P. D. Science 1997, 275, 1305-1308.
- (7) Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C. Structure 1999, 7, 557-566.

10.1021/ic800272v CCC: \$40.75 © 2008 American Chemical Society Published on Web 03/15/2008

features of Ni-Se-enzyme active sites have been characterized.<sup>8-11</sup> Te has not been found to form metal-Te bonds in biological systems.

Inorg. Chem. 2008, 47, 2949-2951

Inorganic Cher

The majority of Ni<sup>II</sup>S<sub>4</sub>-containing complexes exhibit SP structural cores, although a few T<sub>d</sub> arrangements have also been established.<sup>12</sup> Conversely, among the Ni<sup>II</sup>Se<sub>4</sub>-containing complexes, only one (considerably distorted) tetrahedral motif has been reported to date, i.e., [Ni(SePh)<sub>4</sub>]<sup>2-,11</sup> whereas numerous SP structures are known.<sup>13</sup> A T<sub>d</sub> structure has very recently been described for a mixed chalcogen complex with a disordered Ni<sup>II</sup>S<sub>2</sub>Se<sub>2</sub> core.<sup>14</sup> To the best of our knowledge, there are as yet no structurally characterized mononuclear Ni<sup>II</sup>Te<sub>4</sub> complexes.

In this context, it would be highly desirable to synthesize and structurally characterize a series of Ni<sup>II</sup>E<sub>4</sub>containing compounds (E = S, Se, Te) by using the same type of ligand in order to thoroughly appraise the effects of the chalcogen atom E on the core structure. For that purpose, the well-established chalcogenidoimidodiphosphinato ligands,  $[(EPR_2)_2N]^-$  (E = S, Se), <sup>12,15–17</sup> and the more recently discovered Te analogues<sup>18</sup> would be appropriate because they exhibit many desirable features. For example, their large  $E \cdots E$  bite would accommodate a range of coordination sphere geometries. Such ligands

- (8) Baidya, N.; Noll, B. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1992, 31, 2999-3000.
- Marganian, C. A.; Baidya, N.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1992, 31, 2992-2994.
- (10) Marganian, C. A.; Vazir, H.; Baidya, N.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 1995, 117, 1584-1594.
- (11) Goldman, C. M.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1996, 35, 2752-2757.
- (12) Ly, T. Q.; Woollins, J. D. Coord. Chem. Rev. 1998, 176, 451-481.
- (13) Papadimitriou, C.; Veltsistas, P.; Novosad, J.; Cea-Olivares, R.; Toscano, A.; Garcia, P. G. Y.; Lopez-Cardosa, M.; Slawin, A. M. Z.; Woollins, J. D. Polyhedron 1997, 16, 2727-2729.
- (14) Panneerselvam, A.; Malik, M. A.; Afzaal, M.; O'Brien, P.; Helliwell, M. J. Am. Chem. Soc. 2008, 130, 2420-2421.
- (15) Woollins, J. D. J. Chem. Soc., Dalton Trans. 1996, 2893-2901.
- (16) Haiduc, I. J. Organomet. Chem. 2001, 623, 29-42.
- (17) Silvestru, C.; Drake, J. E. Coord. Chem. Rev. 2001, 223, 117-216.
- (18) Briand, G. G.; Chivers, T.; Parvez, M. Angew. Chem., Int. Ed. 2002, 41. 3468-3470.

<sup>\*</sup> To whom correspondence should be addressed. E-mail: kyritsis@ chem.uoa.gr (P.K.), chivers@ucalgary.ca (T.C.).

National and Kapodistrian University of Athens.

<sup>\*</sup> University of Calgary.



**Figure 1.** Thermal ellipsoid plot (30% probability) of the X-ray structure of (a) red ( $2_{Td}$ ) and (b) green ( $2_{SP}$ ) crystals of Ni[(SeP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub>, as well as of (c) Ni[(TeP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub> (3).

have previously displayed great versatility, producing both monomeric and oligomeric metal complexes with a variety of bonding modes.<sup>19–21</sup>

In this Communication, the synthesis and characterization of the Ni<sup>II</sup> complexes Ni[(EP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub> (**2**, E = Se; **3**, E = Te) are reported, and their structures and solution behavior are compared with those of Ni[(SP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub> (**1**).<sup>22</sup> The new complexes **2** and **3** reveal two structural features of wider implications. First, complex **2** is formed as a mixture of stereoisomers in the form of discrete red and green crystals containing tetrahedral (**2**<sub>Td</sub>) or square-planar (**2**<sub>SP</sub>) Ni<sup>II</sup>Se<sub>4</sub> cores, respectively. Second, complex **3** represents the first structurally characterized mononuclear Ni<sup>II</sup>Te<sub>4</sub> complex.

Complexes 2 and 3 were prepared in good yields by the reaction of the TMEDA-solvated alkali-metal salts of the anion  $[(EPR_2)_2N]^-$  with NiBr<sub>2</sub>•DME in THF at room temperature.<sup>23,24</sup> In contrast to complex 1, which has crystallographically imposed  $S_4$  symmetry,<sup>22</sup> complex 2 is obtained as a mixture of stereoisomers.<sup>25</sup> When the red-brown powder of 2 was slowly crystallized at -18 °C from CH<sub>2</sub>Cl<sub>2</sub>/MeOH, discrete red (relative yield 57%) and green (43%) crystals were formed, corresponding to T<sub>d</sub> and SP Ni<sup>II</sup>Se<sub>4</sub> cores, respectively (Figure 1). These crystals could be produced selectively by varying the recrystallization solvent. A large

- (19) Chivers, T.; Eisler, D. J.; Ritch, J. Dalton Trans. 2005, 2675-2677.
- (20) Copsey, M. C.; Chivers, T. Chem. Commun. 2005, 4938–4940.
- (21) Copsey, M. C.; Paneerselvam, A.; Afzaal, M.; Chivers, T.; O'Brien, P. Dalton Trans. 2007, 1528–1538.
- (22) Cupertino, D.; Keyte, R.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D. Inorg. Chem. 1996, 35, 2695–2697.
- (23) A solution of  $({}^{1}Pr_{2}PTe)_{2}NNa \cdot TMEDA$  (0.417 g, 0.648 mmol) in THF (10 mL) was added via cannula to a solution of NiBr<sub>2</sub> · DME (0.100 g, 0.324 mmol) in THF (20 mL) at 23 °C. A color change from pink to brown occurred immediately upon the addition. The solution was allowed to stir for 1 h before the solvent was removed in vacuo. Fresh THF (10 mL) was added and, after filtration, hexane (25mL) was added, and this was left overnight to recrystallize. Complex **3** was obtained as brown crystals (0.259 g, 75%) after 16 h at -35 °C. Anal. Found (calcd) for C<sub>24</sub>H<sub>56</sub>N<sub>2</sub>NiP<sub>4</sub>Te<sub>4</sub> (%): C, 27.34 (27.05); H, 5.38 (5.30); N, 2.68 (2.63). <sup>31</sup>P{<sup>1</sup>H} NMR:  $\delta$  32.1 (s, <sup>1</sup>J(P,Te) = 1365 Hz, <sup>3</sup>J(P,Te) = 146 Hz). Complex **2** (0.225 g, 80%) was prepared in a similar manner by using ( ${}^{1}P_{2}PSe_{2}NL^{1}$ ·TMEDA.<sup>24</sup> Anal. Found (calcd) for C<sub>24</sub>H<sub>56</sub>N<sub>2</sub>NiP<sub>4</sub>Se<sub>4</sub> (%): C, 32.52 (33.09); H, 6.38 (6.48); N, 2.68 (3.21). <sup>31</sup>P{<sup>1</sup>H} NMR:  $\delta$  -621.6 (s).
- (24) Robertson, S. D.; Chivers, T. Dalton Trans. 2008, doi 10.1039/ b717287g.
- (25) Cirera, J.; Ruiz, E.; Alvarez, S. Inorg. Chem. 2008, doi 10.1021/ ic702276k.

**Table 1.** Selected Interatomic Distances (Å) and Angles (deg) for Complexes Ni[( $EP^iPr_2$ )\_2N]\_2 Where E = Se ( $2_{Td}$  and  $2_{SP}$ ), Te (3)

|            | $2_{Td}$  | $2_{SP}^{a}$ | <b>3</b> <sup>b</sup> |
|------------|-----------|--------------|-----------------------|
| Ni1-E1     | 2.401(1)  | 2.3579(8)    | 2.5154(7)             |
| Ni1-E2     | 2.398(1)  | 2.3496(8)    | 2.5083(7)             |
| Ni1-E3     | 2.398(1)  |              |                       |
| Ni1-E4     | 2.403(1)  |              |                       |
| E1-P1      | 2.182(1)  | 2.201(2)     | 2.436(1)              |
| E2-P2      | 2.184(1)  | 2.196(2)     | 2.474(1)              |
| E3-P3      | 2.180(1)  |              |                       |
| E4-P4      | 2.181(1)  |              |                       |
| P1-N1      | 1.591(4)  | 1.601(6)     | 1.598(2)              |
| P2-N1      | 1.594(4)  | 1.610(5)     | 1.599(2)              |
| P3-N2      | 1.592(4)  |              |                       |
| P4-N2      | 1.595(4)  |              |                       |
| E1-Ni1-E2  | 110.67(3) | 100.95(3)    | 99.02(3)              |
| E1-Ni1-E3  | 107.69(3) |              |                       |
| E1-Ni1-E4  | 112.90(4) |              |                       |
| E2-Ni1-E3  | 108.95(4) |              |                       |
| E2-Ni1-E4  | 106.61(3) |              |                       |
| E3-Ni1-E4  | 109.98(3) |              |                       |
| E1-Ni1-E1A |           | 179.76(6)    | 180                   |
| E1-Ni1-E2A |           | 79.05(3)     | 80.98(3)              |
| E2-Ni1-E2A |           | 179.58(6)    | 180                   |
| P1-E1-Ni1  | 106.35(4) | 113.57(5)    | 103.34(3)             |
| P2-E2-Ni1  | 107.31(4) | 108.92(5)    | 113.24(3)             |
| P3-E3-Ni1  | 106.84(4) |              |                       |
| P4-E4-Ni1  | 107.12(4) |              |                       |
| E1-P1-N1   | 118.7(1)  | 117.2(2)     | 117.5(1)              |
| E2-P2-N1   | 117.9(1)  | 116.2(2)     | 118.8(1)              |
| E3-P3-N2   | 118.0(1)  |              |                       |
| E4-P4-N2   | 118.5(1)  |              |                       |
| P1-N1-P2   | 137.0(2)  | 125.8(3)     | 132.8(2)              |
| P3-N2-P4   | 136.3(2)  |              |                       |

<sup>*a*</sup> Symmetry transformation used to generate equivalent atoms: -x + 1,  $y, -z + \frac{1}{2}$ . <sup>*b*</sup> Symmetry transformation used to generate equivalent atoms: 1 - x, 1 - y, 1 - z.

excess of MeOH was added to a saturated solution of **2** in warm CH<sub>2</sub>Cl<sub>2</sub>, which was quickly cooled to -35 °C, precipitating red crystals (**2**<sub>Td</sub>; yield 82%). Similarly, the addition of a large excess of hexane to a saturated solution of **2** in hot THF followed by cooling to -35 °C deposited green crystals (**2**<sub>SP</sub>; yield 59%). These two isomers can be continually interconverted by recrystallization from the appropriate solvent system. Selected bond lengths and angles of the isomers **2**<sub>Td</sub> and **2**<sub>SP</sub> are compared in Table 1.

The mean Ni–Se bond length of 2.400 Å in  $2_{Td}$  is identical with the mean Ni-Se bond length (2.401 Å) in the tetrahedral [Ni(SePh)<sub>4</sub>]<sup>2-</sup> complex.<sup>11</sup> Similarly, the mean Ni-Se bond length (2.354 Å) in the square-planar isomer  $2_{SP}$  is comparable to the value of 2.350 Å found for the phenyl-substituted analogue Ni[(SePPh<sub>2</sub>)<sub>2</sub>N]<sub>2</sub>.<sup>13</sup> The six-membered NiSe<sub>2</sub>P<sub>2</sub>N ring in  $2_{SP}$  causes a widening of the endocyclic Se-Ni-Se angle by 10° with respect to the ideal square-planar angle, a value similar to that seen in the phenyl derivative. The exocyclic Se-Ni-Se angles are consequently tightened by 10° to compensate. However,  $2_{Td}$  displays much less deviation, with all of the Se-Ni-Se angles within 3.5° of the ideal tetrahedral angle of 109.5°. This structure is considerably less distorted than the only other reported tetrahedral Ni<sup>II</sup>Se<sub>4</sub> complex whose analogous bond angles range from 90.66 to 125.87°.11 The existence of both  $T_d$  and SP geometries for 2 provides an opportunity to compare the effects of this change in geometry in the same molecule. As expected from a basic analysis of a four-coordinate d<sup>8</sup> configuration<sup>26,27</sup> in the framework of the angular overlap model,<sup>28</sup> the Ni-Se bond lengths are shorter

(by 0.05Å) in the SP isomer (Table 1). This results in a slight lengthening of the Se–P bonds in  $2_{SP}$ . The square-planar isomer displays a considerable asymmetry in the six-membered NiSe<sub>2</sub>P<sub>2</sub>N ring, as evidenced by the disparity in the two Ni–Se–P angles (113.57 and 108.92°). Such asymmetry is not as pronounced in  $2_{Td}$ , with the difference in such angles being only 1°. As expected,  $2_{Td}$  has a larger Se–Ni–Se angle than  $2_{SP}$  and, consequently, a wider Se····Se bite. This has a subsequent effect, tightening the P–N–P angle in the SP isomer (125.8°) with respect to the protonated free ligand HN(SeP<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub> (131.2°)<sup>29</sup> and expanding this angle in the T<sub>d</sub> isomer (136.7°).

It is well-known that Ni<sup>II</sup> complexes of the type NiX<sub>2</sub>L<sub>2</sub> (X = halide, L = PR<sub>3</sub>) exist in solution as an equilibrium mixture of T<sub>d</sub> and SP isomers. In the solid state, T<sub>d</sub> structures are preferred for R = Ph, whereas SP structures are generally found for R = alkyl.<sup>1</sup> However, examples of the presence of both isomers in the solid state for the same complex are rare. In the complex [NiBr<sub>2</sub>(PBzPh<sub>2</sub>)<sub>2</sub>], two independent molecules *in the same unit cell* show SP and T<sub>d</sub> geometry.<sup>30</sup> The unique feature of complex **2** is the isolation of both the T<sub>d</sub> and SP isomers as separable red and green crystals, respectively, from one reaction. Although the related complex Ni[(SPPh<sub>2</sub>)<sub>2</sub>N]<sub>2</sub> has been characterized in both a T<sub>d</sub><sup>31,32</sup> and a SP<sup>33</sup> geometry, the crystal of the SP isomer contains solvation molecules (THF).

The four Te atoms of 3 lie in the same plane (Figure 1 and Table 1). However, similarly to  $2_{SP}$  (vide supra), the Ni<sup>II</sup>Te<sub>4</sub> site is distorted from a regular SP geometry as a result of the constraint imposed by the chelate ring endocyclic and exocyclic Te-Ni-Te angles of 99.02° and 80.98°, respectively. The six-membered NiTe<sub>2</sub>P<sub>2</sub>N ring shows asymmetry at the Ni-Te-P angles, which in 3 is even more pronounced  $(103.34^{\circ} \text{ and } 113.24^{\circ})$  than in **2**<sub>SP</sub>. This increased asymmetry forces the P–N–P angle (132.8°) of **3** to increase by ca. 7° with respect to that in  $2_{SP}$ . Despite this structural asymmetry, other structural features, such as the Ni-Te bond lengths (2.515 Å and 2.508 Å), are close in value. For comparison, the recently reported trinuclear complex  $[(Cp*_2Nb)_2NiTe_4]$ , which contains a highly distorted square-planar Ni<sup>II</sup>Te<sub>4</sub> core, has a mean Ni-Te bond length of 2.475 Å.34 Both the Ni<sup>II</sup>Te<sub>4</sub>- and Ni<sup>II</sup>Te<sub>4</sub>Nb<sub>2</sub>-containing systems incorporate weak intramolecular Te····Te interactions (3.26 and 3.16 Å, respectively), which might stabilize the observed distorted square-planar structures. In this context, we note the sug-

- (26) Mingos, D. M. P. Essentials of Inorganic Chemistry 2; Oxford University Press: New York, 1998; p 15.
- (27) Purcell, K. F.; Kotz, J. C. *Inorganic Chemistry*; Saunders: London, 1977; pp 543–551.
- (28) Figgis, B. N.; Hitchman, M. A. Ligand Field Theory and its Applications; Wiley-VCH: New York, 2000; pp 53–82.
- (29) Cupertino, D.; Birdsall, D. J.; Slawin, A. M. Z.; Woollins, J. D. Inorg. Chim. Acta 1999, 290, 1–7.
- (30) Kilbourn, B. T.; Powell, H. M. J. Chem. Soc. A **1970**, 1688–1693.
- (31) Bhattacharyya, P.; Novosad, J.; Phillips, J.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 1995, 1607–1613.
- (32) Roesler, R.; Silvestru, C.; Espinosa-Perez, G.; Haiduc, I.; Cea-Olivares, R. *Inorg. Chim. Acta* **1996**, *241*, 47–54.
- (33) Simon-Manso, E.; Valderrama, M.; Boys, D. Inorg. Chem. 2001, 40, 3647–3649.
- (34) Brandl, M.; Ebner, A.; Kubicki, M. M.; Mugnier, Y.; Wachter, J.; Vigier-Juteau, E.; Zabel, M. Eur. J. Inorg. Chem. 2007, 994–1003.
- (35) Hsieh, C. H.; Hsu, I. J.; Lee, C. M.; Ke, S. C.; Wang, T. Y.; Lee, G. H.; Wang, Y.; Chen, J. M.; Lee, J. F.; Liaw, W. F. *Inorg. Chem.* 2003, 42, 3925–3933.

## COMMUNICATION

gestion that complexes containing NiN<sub>2</sub>E<sub>2</sub> cores are trans when E = S or Se, but cis when E = Te because of the stabilizing intramolecular Te····Te interactions of 3.45 Å.<sup>35</sup>

The solution behavior of complexes 1-3 has been probed by <sup>31</sup>P NMR spectroscopy in THF- $d_8$ . The tetrahedral geometry of 1 is maintained in solution as revealed by a broad resonance at -758.4 ppm. Interestingly, crystals of  $2_{SP}$  and  $2_{Td}$  give identical <sup>31</sup>P NMR spectra, which show a broad resonance at -621.6 ppm. The appearance of this paramagnetically shifted peak indicates that 2 exists only as the T<sub>d</sub> isomer in solution.<sup>36</sup> This conclusion is supported by the observations that green crystals of  $2_{SP}$  give a deep-red solution when dissolved in THF-d<sub>8</sub>. Such a structural transformation has previously been observed for SP crystals of Ni[(SPPh<sub>2</sub>)<sub>2</sub>N]<sub>2</sub>, which show a <sup>31</sup>P NMR chemical shift at -459 ppm.<sup>33</sup> The large width of its <sup>31</sup>P NMR resonance (ca. 1600 Hz at the base) obscures the <sup>77</sup>Se satellites [typical <sup>1</sup>J(P-Se) values are in the range 500–600 Hz].<sup>37</sup> Meanwhile, the <sup>31</sup>P NMR spectrum of crystals of **3** reveals two peaks at 32.1 and -873.2 ppm in an integrated ratio of ca. 42:1. The predominance of the resonance at 32.1 ppm shows that this complex retains the SP Ni<sup>II</sup>Te<sub>4</sub> core in solution. While it is possible to obtain a <sup>125</sup>Te NMR spectrum from diamagnetic 3, the paramagnetism of 2 in solution precludes the observation of a <sup>77</sup>Se NMR resonance.

In summary, a comparison of the structures of Ni[(EP-<sup>i</sup>Pr<sub>2</sub>)<sub>2</sub>N]<sub>2</sub> complexes (E = S, Se, Te) reveals a chalcogendependent trend from a T<sub>d</sub> (1, E = S) to SP (3, E = Te) Ni<sup>II</sup>E<sub>4</sub> core.<sup>38</sup> We note that complexes 1–3 are not isomorphous (Table S1 in the Supporting Information). The isolation of both T<sub>d</sub> and SP stereoisomers for 2 (E = Se) from the same reaction is a novel feature of Ni<sup>II</sup> coordination chemistry; the mononuclear planar Ni<sup>II</sup>Te<sub>4</sub> site in complex **3** is also unprecedented. In solution, the T<sub>d</sub> and SP geometries are preserved for 1 and 3, respectively, but 2<sub>SP</sub> isomerizes to 2<sub>Td</sub>. Relevant magnetic measurements, UV-vis spectra, and theoretical calculations will be combined in a full paper.

Acknowledgment. S.D.R. and T.C. acknowledge the NSERC (Canada) and the University of Calgary for funding and Dr. Jari Konu for the X-ray data collection of complex **3**. P.K. acknowledges the Special Account of the University of Athens (Grant 70/ 4/7575) and the Empirikion Foundation for funding. Prof. S. Alvarez (Universitat de Barcelona) is thanked for communicating unpublished data (ref 25) and for helpful discussions.

Supporting Information Available: Table of crystallographic data for  $2_{Td}$ ,  $2_{SP}$ , and 3 and details for an alternative synthesis of 2. This material is available free of charge via the Internet at http://pubs.acs.org.

## IC800272V

- (36) <sup>31</sup>P NMR spectra of **2** were also obtained in CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>, toluene- $d_8$ , and benzene- $d_6$  and showed only the paramagnetic isomer (**2**<sub>Td</sub>) in each case.
- (37) Birdsall, D. J.; Novosad, J.; Slawin, A. M. Z.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 2000, 435–439.
- (38) When this Communication was about to be submitted, Prof. P. O'Brien and Dr. M. Afzaal (The University of Manchester, Manchester, U.K.) informed us of related work in which they have characterized the T<sub>d</sub> and SP isomers of complex 2.